Speeds of Sound and Isentropic Compressibilities of Binary Mixtures Containing Cyclic Ethers and Haloalkanes at 298.15 and 313.15 K

B. Giner,¹ A. Villares,¹ I. Gascón,¹ P. Cea,¹ and C. Lafuente^{1,2}

Received May 17, 2004

Speeds of sound of binary mixtures formed by either 1,3-dioxolane or 1,4-dioxane and isomeric chlorobutanes at 298.15 and 313.15 K are reported in this paper. Isentropic compressibilities and isentropic compressibility deviations have been calculated from experimental measurements. Isentropic compressibility deviations have been fitted to a Redlich–Kister equation, and the results have been discussed in terms of molecular interactions and structural effects. Isentropic compressibilities have been estimated at 298.15 K using the Prigogine–Flory–Patterson theory.

KEY WORDS: chlorobutane; cyclic ether; isentropic compressibility; speed of sound.

1. INTRODUCTION

A knowledge of the thermodynamic behavior of liquid mixtures has been our main aim during recent years. The investigated mixtures were chosen in order to obtain information about the molecular interactions between their components [1–5]. This is the case for the systems studied in this paper, which contain oxygenated and haloalkane compounds.

Speed-of-sound measurements and calculated isentropic compressibilities as well as isentropic compressibility deviations of 1,3-dioxolane or 1,4-dioxanene with each of several isomers of chlorobutane: 1-chlorobutane, 2-chlorobutane, 2-methyl-1-chloropropane, and 2-methyl-2-chloropropane,

1735

¹Departamento de Química Orgánica – Química Física, Facultad de Ciencias, Ciudad Universitaria, 50009 Zaragoza, Spain.

²To whom correspondence should be addressed. E-mail: celadi@unizar.es

Compound	$T(\mathbf{K})$	$\rho \ (g \cdot cm^{-3})$		$u \ (\mathbf{m} \cdot \mathbf{s}^{-1})$
		Experimental	Literature	
1,3-Dioxolane	298.15	1.0589	1.05877 [6]	1338.8
	313.15	1.0399		1270.8
1,4-Dioxane	298.15	1.0279	1.02797 [7]	1344.0
	313.15	1.0107		1278.6
1-Chlorobutane	298.15	0.8808	0.88095 [7]	1119.9
	313.15	0.8638		1057.2
2-Chlorobutane	298.15	0.8675	0.8671 [8]	1067.8
	313.15	0.8501		1007.1
2-Methyl-1-chloropropane	298.15	0.8708	0.8717 [7]	1079.8
	313.15	0.8535		1016.6
2-Methyl-2-chloropropane	298.15	0.8370	0.8361 [7]	984.1
	313.15	0.8183		919.9

Table I. Densities, ρ , and Speeds of Sound, u, of the Pure Compounds

are presented at 298.15 and 313.15 K. Furthermore, estimation of isentropic compressibilities using the Prigogine–Flory–Patterson theory has been provided and comparisons between the reported and estimated isentropic compressibilities have been performed.

To the best of our knowledge, there are not any literature references for measurements for these systems.

2. EXPERIMENTAL

The chemicals provided by Aldrich were: 1,3-dioxolane, 1-chlorobutane, 2-chlorobutane, and 2-methyl-2-chloropropane (better than 99 mol%) and 1,4-dioxane (better than 99.9 mol%). Fluka provided 2-methyl-1-chloropropane (better than 99 mol%). The purity of the liquids was checked by gas chromatography and by measuring their densities. Table I shows experimental values of density for the pure compounds at 298.15 and 313.15 K compared with literature data [6–8] at 298.15 K. No further purification was considered necessary.

Speeds of sound, u, of the pure compounds and their mixtures were obtained with an Anton Paar DSA-48 vibrating tube densimeter and sound analyzer. The temperature was automatically kept constant within ± 0.01 K. The densities needed to obtain the isentropic compressibilities were also measured with the same apparatus. The precision of the speed of sound and density measurements is $\pm 0.1 \,\mathrm{m \cdot s^{-1}}$ and $\pm 3 \times 10^{-5} \,\mathrm{g \cdot cm^{-3}}$, respectively. The estimated total uncertainty of the speed-of-sound measurements is $\pm 1 \text{ m} \cdot \text{s}^{-1}$, while the overall uncertainty of the density measurements is estimated to be $\pm 10^{-5} \text{ g} \cdot \text{cm}^{-3}$. Calibration of the apparatus was carried out with air and deionized double-distilled water. More details of calibration and procedures were reported in a previous paper [9]. Experimental values of the speed of sound of the pure compounds are also reported in Table I.

3. RESULTS AND DISCUSSION

Isentropic compressibilities, κ_S , and isentropic compressibility deviations, $\Delta \kappa_S$, were calculated from experimental densities, ρ , and speeds of sound, u, using the following equations

$$\kappa_{\rm S} = \frac{1}{\rho u^2},\tag{1}$$

$$\Delta \kappa_{\rm S} = \kappa_{\rm S} - x_1 \kappa_{\rm S,1} - x_2 \kappa_{\rm S,2},\tag{2}$$

where x_i and $\kappa_{S,i}$ are, respectively, the mole fraction and isentropic compressibility of component *i*.

Experimental speeds of sound and estimated isentropic compressibilities, as well as isentropic compressibility deviations, are compiled in Table II, and experimental $\Delta \kappa_S$ values are shown in Figs. 1–4.

Isentropic compressibility deviations have been fitted to a Redlich-Kister type equation

$$\Delta \kappa_{\rm s} = x_1 (1 - x_1) \sum A_i (2x_1 - 1)^i, \qquad (3)$$

where A_i s are adjustable parameters determined by least-squares optimization. These values are listed in Table III together with the corresponding standard deviations.

For 1,3-dioxolane mixtures, isentropic compressibility deviations are positive except for the mixture of 1,3-dioxolane with 2-methyl-2-chloropropane. Isentropic compressibility deviations decrease in the order: 1-chlorobutane >2-methyl-1-chloropropane > 2-chlorobutane > 2-methyl-2-chloropropane, although the behavior of the mixtures containing 2-chlorobutane and 2-methyl-1-chloropropane is similar. The $\Delta \kappa_S$ values for the mixtures with 1,4-dioxane are lower than for the mixtures containing 1,3-dioxolane. On the other hand, the variation of $\Delta \kappa_S$ with the isomeric chlorobutanes is very similar for both cyclic ethers. The change of $\Delta \kappa_S$ values with temperature is not very significant except for the mixtures containing 2-methyl-2-chloropropane.

These results can be explained in terms of molecular interactions and structural effects. Positive isentropic compressibility deviations are

<i>x</i> ₁	$u \pmod{(\mathbf{m} \cdot \mathbf{s}^{-1})}$	$\kappa_{\rm S}~({\rm TPa}^{-1})$	$\Delta \kappa_{\rm S}({\rm TPa}^{-1})$	<i>x</i> ₁	$u(\mathbf{m}\cdot\mathbf{s}^{-1})$	$\kappa_{\rm S}({\rm TPa}^{-1})$	$\Delta \kappa_{\rm S}~({\rm TPa}^{-1})$
1,3-Dio	kolane (1)	+ 1-chlorobu	tane (2) at 2	298.15 K			
0.0448	1123.2	894.8	6.5	0.6120	1216.3	696.8	23.1
0.0952	1127.9	881.3	12.3	0.7006	1238.9	659.9	19.5
0.1985	1141.1	849.0	18.7	0.8169	1272.8	609.5	13.3
0.2893	1154.6	818.1	22.3	0.9089	1304.0	568.3	6.9
0.3930	1172.2	780.6	24.0	0.9592	1322.7	545.5	3.1
0.4984	1191.9	741.3	24.6				
1,3-Dio	kolane (1)	+ 2-chlorobu	tane (2) at 2	298.15 K			
0.0735	1077.3	982.7	7.2	0.5927	1190.1	734.4	10.3
0.0966	1080.9	972.7	8.4	0.7015	1222.7	679.8	8.3
0.1565	1091.0	945.9	10.6	0.8176	1263.3	619.9	4.7
0.2803	1115.0	887.4	12.1	0.8965	1294.3	579.2	2.2
0.3882	1138.5	835.0	11.9	0.9669	1324.3	543.4	0.4
0.5174	1169.9	771.7	11.1				
1,3-Dio	kolane (1)	+ 2-methyl-1-	-chloropropa	ne (2) at	298.15 K		
0.0593	1087.2	963.5	5.7	0.6024	1198.4	721.9	12.8
0.1597	1102.5	922.9	11.1	0.7033	1227.8	673.2	10.4
0.2016	1109.6	905.2	12.6	0.8014	1260.4	624.8	6.9
0.3024	1128.5	860.9	14.4	0.9029	1298.2	574.7	3.3
0.4537	1160.9	792.0	14.8	0.9540	1318.9	549.6	1.6
0.5149	1175.5	763.5	14.3				
1,3-Dio	kolane (1)	+ 2-methyl-2-	chloropropa	ne (2) at	298.15 K		
0.0411	992.5	1203.8	-0.9	0.5870	1153.6	793.2	-25.6
0.0759	1000.3	1177.5	-2.6	0.7178	1204.6	704.0	-22.3
0.2013	1032.3	1078.8	-12.7	0.7911	1236.2	655.7	-18.9
0.3123	1063.9	992.5	-20.5	0.9100	1292.5	580.4	-10.1
0.3956	1089.3	929.7	-24.4	0.9575	1316.6	551.8	-5.2
0.4961	1121.9	856.9	-26.1				
1,3-Dio	xolane (1)	+ 1-chlorobu	tane (2) at 2	313.15 K			
0.0323	1060.3	1025.5	3.9	0.6057	1151.0	794.0	24.9
0.0986	1067.3	1003.3	10.9	0.7016	1173.7	748.9	22.0
0.1825	1077.5	972.9	17.5	0.8062	1201.8	698.1	17.3
0.2910	1092.5	931.1	23.5	0.9005	1231.3	650.5	11.2
0.3883	1107.9	891.3	26.6	0.9550	1251.7	621.0	5.7
0.4921	1126.9	846.1	27.0				
1,3-Dio	xolane (1)	+ 2-chlorobu	tane (2) at 2	313.15 K			
0.0623	1015.7	1130.0	5.4	0.6022	1129.2	830.2	10.3
0.0916	1019.9	1115.9	7.8	0.7090	1160.6	767.6	8.0
0.1966	1036.9	1061.8	13.0	0.8158	1195.8	705.2	5.7
0.2914	1054.4	1010.5	15.1	0.8967	1225.8	657.7	3.9
0.4126	1080.4	941.6	14.7	0.9668	1255.0	616.1	1.9
0.5090	1104.2	885.0	12.5				

Table II. Speeds of Sound, *u*, Isentropic Compressibilities, κ_S , and Isentropic Compressibility Deviations, $\Delta \kappa_S$, of the Binary Mixtures for Various Compositions (in mole fraction)

<i>x</i> ₁	$u \ (\mathbf{m} \cdot \mathbf{s}^{-1})$	$\kappa_{\rm S}~({\rm TPa}^{-1})$	$\Delta \kappa_{\rm S}({\rm TPa}^{-1})$	<i>x</i> ₁	$u(\mathbf{m} \cdot \mathbf{s}^{-1})$	$\kappa_{\rm S}({\rm TPa}^{-1})$	$\Delta \kappa_{\rm S}~({\rm TPa}^{-1})$
1,3-Di	oxolane (1)	+ 2-methyl-1	-chloropropar	ne (2) a	t 313.15 K		
0.0243	1020.6	1120.9	0.2	0.5874	1128.4	832.6	15.0
0.0806	1029.6	1092.5	2.1	0.7015	1160.8	767.9	11.7
0.2037	1048.9	1033.0	8.8	0.7952	1190.4	714.7	9.0
0.2946	1064.1	988.7	13.5	0.9168	1234.2	645.3	5.0
0.3950	1083.3	937.4	16.2	0.9713	1257.4	612.9	2.0
0.4947	1105.1	884.3	16.8				
1,3-Di	oxolane (1)	+ 2-methyl-2	-chloropropar	ne (2) a	t 313.15 K		
0.0449	930.8	1398.6	-7.4	0.5953	1092.6	900.5	-38.4
0.0947	943.5	1348.3	-15.5	0.7576	1154.8	772.9	-28.3
0.1525	958.0	1292.6	-22.1	0.8053	1174.5	737.5	-23.2
0.2961	996.8	1159.0	-33.9	0.9210	1227.6	653.3	-9.2
0.3919	1024.8	1073.8	-37.8	0.9623	1249.0	623.5	-4.0
0.5008	1059.6	979.5	-39.7				
1,4-Di	oxane (1) +	1-chlorobuta	une (2) at 298	8.15 K			
0.0487	1126.1	889.9	2.4	0.5420	1217.2	710.0	3.4
0.0869	1131.5	877.2	3.7	0.6656	1246.5	663.7	2.5
0.1860	1147.0	842.3	5.2	0.7723	1274.2	623.9	1.8
0.2516	1158.4	818.4	5.4	0.8869	1307.3	581.6	1.5
0.3605	1178.9	777.8	4.8	0.9581	1329.9	554.5	0.5
0.4388	1194.8	748.5	4.2				
1,4-Di	oxane (1) +	2-chlorobuta	une (2) at 298	8.15 K			
0.0650	1079.4	980.1	-0.2	0.6239	1216.2	705.2	-11.1
0.1064	1087.5	959.7	-1.1	0.7115	1243.1	664.6	-10.3
0.1678	1100.3	928.8	-3.0	0.8064	1273.9	621.9	-8.1
0.2857	1127.1	869.0	-7.1	0.9338	1318.9	566.5	-3.4
0.3819	1150.6	821.0	-9.7	0.9593	1328.7	555.4	-2.4
0.5016	1181.7	762.9	-11.2				
1,4-Di	oxane (1) +	2-methyl-1-c	hloropropane	(2) at	298.15 K		
0.0381	1086.1	968.3	0.2	0.5589	1202.8	728.0	-7.5
0.0906	1095.4	944.6	0.0	0.6553	1229.6	685.3	-7.2
0.1777	1112.4	904.0	-1.6	0.7742	1265.6	633.4	-5.9
0.2683	1131.7	861.5	-3.6	0.9020	1308.0	579.4	-2.9
0.3715	1155.3	813.8	-5.5	0.9483	1324.6	560.0	-1.7
0.4499	1174.5	777.4	-6.8				
1,4-Di	oxane (1) +	2-methyl-2-c	hloropropane	(2) at	298.15 K		
0.0259	991.0	1210.7	-5.0	0.5670	1164.0	787.5	-52.1
0.0812	1005.5	1163.6	-13.7	0.6656	1200.9	724.8	-46.3
0.1550	1027.6	1098.2	-27.8	0.7798	1247.1	656.1	-35.6
0.2642	1061.0	1008.0	-42.0	0.9233	1308.9	577.5	-14.4
0.3736	1096.9	922.7	-51.4	0.9760	1332.8	550.6	-4.7
0.4613	1126.4	859.5	-53.5				

 Table II.
 (Continued)

<i>x</i> ₁	$u \ (\mathbf{m} \cdot \mathbf{s}^{-1})$	$\kappa_{\rm S}~({\rm TPa}^{-1})$	$\Delta \kappa_{\rm S}({\rm TPa}^{-1})$	<i>x</i> ₁	$u(\mathbf{m} \cdot \mathbf{s}^{-1})$	$\kappa_{\rm S}({\rm TPa}^{-1})$	$\Delta \kappa_{\rm S} ~({\rm TPa}^{-1})$
1,4-Dio	oxane (1) +	1-chlorobuta	ne (2) at 313	3.15 K			
0.0528	1065.1	1013.3	0.3	0.6059	1166.8	778.1	3.2
0.0706	1067.8	1005.8	0.4	0.6864	1186.0	743.3	3.1
0.1864	1086.0	957.0	1.5	0.7962	1214.6	695.6	2.6
0.2770	1101.2	918.7	2.3	0.9124	1248.9	644.5	1.6
0.3940	1122.6	869.1	2.9	0.9479	1260.5	628.7	1.1
0.5068	1145.1	820.7	3.2				
1,4-Dio	oxane (1) +	2-chlorobuta	ne (2) at 313	3.15 K			
0.0786	1021.2	1114.8	-1.3	0.5891	1142.4	818.5	-14.6
0.1045	1026.0	1099.9	-1.9	0.6624	1162.7	779.9	-12.5
0.1775	1041.0	1056.2	-5.1	0.7942	1201.7	712.7	-6.6
0.2634	1060.0	1004.7	-9.0	0.9090	1240.7	654.2	-1.5
0.3864	1089.3	932.1	-13.3	0.9485	1256.2	633.3	-0.5
0.4852	1114.5	875.7	-15.0				
1,4-Dio	oxane (1) +	2-methyl-1-c	hloropropane	(2) at	313.15 K		
0.0415	1024.2	1110.1	-1.8	0.6042	1151.4	802.5	-11.9
0.0903	1033.4	1082.5	-3.5	0.7014	1177.0	755.0	-8.0
0.1919	1053.4	1025.7	-6.6	0.8136	1208.4	701.9	-1.8
0.2910	1074.7	970.3	-9.6	0.9176	1242.8	650.9	2.1
0.4693	116.9	872.7	-13.0	0.9550	1257.6	631.1	2.1
0.5061	1126.2	853.1	-13.2				
1,4-Dio	oxane (1) +	2-methyl-2-c	hloropropane	(2) at	313.15 K		
0.0533	935.3	1382.2	-17.2	0.5822	1106.3	885.4	-70.3
0.0898	945.6	1342.2	-26.7	0.7006	1151.0	797.4	-58.9
0.2057	980.7	1218.7	-52.9	0.8139	1196.0	720.4	-40.9
0.2998	1011.0	1124.7	-68.0	0.8414	1206.5	703.9	-34.3
0.4008	1044.1	1032.5	-75.4	0.9540	1256.0	633.6	-10.2
0.4916	1074.5	956.7	-75.0				

Table II. (Continued)

due to the breaking of interactions and the corresponding disruption of molecular order in the pure compounds [10]. Interactions between the molecules of cyclic ethers or chlorobutanes are broken in the mixing process; the breaking of strong dipole–dipole interactions in the 1,3-dioxolane, which can be considered as a polar fluid in contrast with 1,4-dioxane which is a nonpolar fluid [11], leads to higher positive $\Delta \kappa_S$ values for the mixtures containing 1,3-dioxolane. Although new donor– acceptor interactions are formed between the oxygen and chloride atoms, this contribution is less important. Structural effects like interstitial accommodation and changes in free volume also play an important role as is demonstrated by the different behavior of the isomeric chlorobutanes:

Fig. 1. Isentropic compressibility deviations, $\Delta \kappa_{\rm S}$, at 298.15 K of binary mixtures of 1,3-dioxolane (1) with 1-chlorobutane (2) (\bullet), 2-chlorobutane (2) (\circ), 2-methyl-1-chloropropane (2) (\blacksquare), 2-methyl-2-chloropropane (2) (\Box).

positive $\Delta \kappa_S$ values for the mixtures with 1-chlorobutane that have a linear structure, and on the other hand, negative $\Delta \kappa_S$ values for the mixtures with 2-methyl-2-chloropropane which represent a globular structure. Finally, the behavior of 2-chlorobutane and 2-methyl-1-chloropropane systems is situated between these two extreme situations.

4. THEORY

Oswall [14] extended the Prigogine–Flory–Patterson theory to estimate the isentropic compressibilities and speeds of sound of liquid mixtures. At

Fig. 2. Isentropic compressibility deviations, $\Delta \kappa_S$, at 313.15 K of binary mixtures of 1,3-dioxolane (1) with 1-chlorobutane (2) (\bullet), 2-chlorobutane (2) (\circ), 2-methyl-1-chloropropane (2) (\blacksquare), 2-methyl-2-chloropropane (2) (\square).

a given temperature, *T*, the P–F–P theory can be used to calculate the molar volumes, *V*, the molar heat capacities, C_P of a liquid mixture if the interaction parameter, χ_{12} , is known. The terms $(\partial V/\partial T)_P$ and $(\partial V/\partial P)_T$ can be also calculated by means of the following equations

$$(\partial V/\partial P)_T = \frac{(-\tilde{V}^{7/3} + 2\tilde{V}^2 - 2\tilde{V}^{5/3})}{((4/3) - \tilde{V}^{1/3})} \frac{V^*T^*}{P^*T},$$
(4)

$$(\partial V/\partial T)_P = \frac{\tilde{V}(\tilde{V}^{1/3} - 1)}{((4/3) - \tilde{V}^{1/3})} \frac{V^*}{T},$$
(5)

Fig. 3. Isentropic compressibility deviations, $\Delta \kappa_S$, at 298.15 K of binary mixtures of 1,4-dioxane (1) with 1-chlorobutane (2) (\bullet), 2-chlorobutane (2) (\circ), 2-methyl-1-chloropropane (2) (\blacksquare), 2-methyl-2-chloropropane (2) (\square).

where V^* , P^* , and T^* are the characteristic volume, pressure, and temperature of the mixture, respectively, and \tilde{V} is the corresponding reduced volume.

From all these quantities the isentropic compressibility, $\kappa_{\rm S} = -V^{-1}$ $(\partial V/\partial P)_S$ can be obtained using the following thermodynamic relation

$$(\partial V/\partial P)_{\mathbf{S}} = (\partial V/\partial P)_T + TC_P^{-1}(\partial V/\partial T)_P^2$$
(6)

and finally the isentropic compressibility is related to the speed of sound, u, by Eq. (1).

Flory parameters [15,16] of the pure compounds along with their physical properties are given in Table IV. Thermal expansion coefficients,

Fig. 4. Isentropic compressibility deviations, $\Delta \kappa_S$, at 313.15 K of binary mixtures of 1,4-dioxane (1) with 1-chlorobutane (2) (\bullet), 2-chlorobutane (2) (\circ), 2-methyl-1-chloropropane (2) (\blacksquare), 2-methyl-2-chloropropane (2) (\square).

 α , were derived from measured densities in this laboratory. Isothermal compressibilities, $\kappa_{\rm T}$, were calculated from thermal expansion coefficients, experimental isentropic compressibilities, and molar heat capacities [2, 17]. The number of contact sites per segment of a molecule, *s*, has been estimated using Bondi's method [18].

In this work the interaction parameter for each mixture was obtained by fitting the P–F–P theory to the corresponding experimental equimolar $V^{\rm E}$ values [19,20]. Once the interaction parameter is obtained, the isentropic compressibility and the speed of sound can be estimated.

Table V gives the estimated and experimental equimolar u and κ_S values along with the interaction parameter. Estimated values for speeds

System	T (K)	A_0	A_1	A_2	<i>A</i> ₃	σ
1,3-Dioxolane +						
1-Chlorobutane	298.15	97.7	-9.5	19.7	-39.4	0.3
	313.15	106.7	-16.1	22.3	27.9	0.3
2-Chlorobutane	298.15	45.0	-14.9	22.0	-47.9	0.1
	313.15	51.3	-46.6	25.1	26.2	0.2
2-Methyl-1-chloropropane	298.15	57.5	-20.4	11.2	-21.4	0.1
	313.15	65.9	-20.7	-29.9	60.9	0.2
2-Methyl-2-chloropropane	298.15	-105.5	-8.9	28.7	-59.3	0.3
	313.15	-159.7	-2.0	6.8	47.0	0.4
1,4-Dioxane +						
1-Chlorobutane	298.15	14.5	-16.7	22.1	-4.2	0.1
	313.15	12.8	2.2	1.2	8.3	0.0
2-Chlorobutane	298.15	-45.3	-13.0	18.7	-23.7	0.1
	313.15	-60.9	-5.1	61.9	8.8	0.1
2-Methyl-1-chloropropane	298.15	-29.0	-14.3	16.9	-8.4	0.1
	313.15	-52.9	0.3	65.1	61.0	0.1
2-Methyl-2-chloropropane	298.15	-215.4	19.6	19.4	-37.5	0.5
	313.15	-301.5	55.3	13.3	-11.9	0.8

Table III. Redlich–Kister Parameters, A_i s, and Standard Deviations, σ , for $\Delta \kappa_S$ (TPa⁻¹) at 298.15 and 313.15 K

Table IV. Physical Properties and Flory Parameters of the Pure Compounds at 298.15 K

Compound	$\alpha \ (mK^{-1})$	$\kappa_{\rm T}~({\rm TPa}^{-1})$	\tilde{V}	$P^* (J \cdot cm^{-3})$	s (Å ⁻¹)
1,3-Dioxolane	1.164	758.1	1.280	750	1.23
1,4-Dioxane	1.132	738.0 [8]	1.274	742	1.25
1-Chlorobutane	1.216	1200.7	1.290	502	1.42
2-Chlorobutane	1.313	1355.5	1.309	495	1.41
2-Methyl-1-chloropropane	1.183	1269.2	1.284	458	1.42
2-Methyl-2-chloropropane	1.437	1656.2	1.331	458	1.45

of sound and isentropic compressibilities are better for 1,3-dioxolane mixtures (nearly 1.5% deviation from experimental data for speed of sound and 2.5% deviation from experimental isentropic compressibilities) than for 1,4-dioxane systems whose deviations in speed of sound are 2.5% from experimental values and nearly 5% for isentropic compressibilities.

ACKNOWLEDGMENT

This work was financially supported by IBERCAJA (IBE2002-CIEN-02) for which the authors are very grateful.

System	$\chi_{12} \ (J \cdot cm^{-3})$	$u_{\rm cal}(\mathbf{m}\cdot\mathbf{s}^{-1})$	$u_{\exp}(\mathbf{m}\cdot\mathbf{s}^{-1})$	$\kappa_{\rm Scal}({\rm TPa^{-1}})$	$\kappa_{\text{Sexp}}(\text{TPa}^{-1})$
1,3-Dioxolane +	20.4	1211.1	1101.8	717 9	740.0
2-Chlorobutane	14.2	1184.5	1164.7	755.4	780.5
2-Methyl-1-chloropropane 2-Methyl-2-chloropropane	4.4 - 0.5	1192.1 1142.7	1171.6 1120.8	745.0 825.2	770.4 854.4
1.4-Dioxane +					
1-Chlorobutane	25.2	1237.0	1207.6	691.8	726.0
2-Chlorobutane	24.5	1210.7	1181.1	727.0	763.8
2-Methyl-1-chloropropane	11.7	1218.9	1187.1	716.2	754.9
2-Methyl-2-chloropropane	11.2	1172.5	1139.8	787.0	832.7

Table V. Interaction Parameters, χ_{12} , and Calculated and Experimental Equimolar Speeds of Sound and Isentropic Compressibilities at 298.15 K

REFERENCES

- 1. H. Artigas, C. Lafuente, M. C. López, F. M. Royo, and J. S. Urieta, Zeit. Phys. Chem. 215:933 (2001).
- I. Gascón, S. Martín, P. Cea, M. C. López, and F. M. Royo, J. Solution Chem. 31:905 (2002).
- I. Gascón, H. Artigas, S. Martin, P. Cea, and C. Lafuente, J. Chem. Thermodyn. 34:1351 (2002).
- 4. B. Giner, H. Artigas, A. Carrión, C. Lafuente, and F. M. Royo, J. Mol. Liquids 108:303 (2003).
- 5. I. Gascón, S. Martín, B. Giner, M. Haro, and C. Lafuente, Can. J. Chem. 81:357 (2003).
- 6. R. Francesconi and F. Comelli, J. Chem. Eng. Data. 40:31 (1995).
- 7. TRC Thermodynamic Tables Non-Hydrocarbons, Selected Values of Properties of Chemical Compounds (Thermodynamic Research Center, Texas A&M University College Station, Texas, 1983).
- 8. J. A. Riddick, W. B. Bunger, and T. K. Sakano, in *Organic Solvents. Physical Properties and Methods of Purification*, 4th Ed. (Wiley Interscience, New York, 1986).
- 9. C. Lafuente, J. Pardo, J. Santafé, F. M. Royo, and J. S. Urieta, J. Chem. Thermodyn. 27:541 (1995).
- 10. R. J. Fort and W. R. Moore, Trans. Faraday Soc. 61:2102 (1965).
- 11. T. Takizawa and K. Tamura, J. Therm. Anal. Calorim. 69:1075 (2002).
- 12. S. L. Oswal, Acoustics Lett. 14:17 (1990).
- 13. H. T. Van and D. Patterson, J. Solution Chem. 11:793 (1982).
- 14. M. Costas and D. Patterson, J. Solution Chem. 11:807 (1982).
- 15. P. J. Flory, R. A. Orwoll, and A. Vrij, J. Am. Chem. Soc. 86:3507 (1964).
- 16. A. Abe and P. J. Flory, J. Am. Chem. Soc. 87:1838 (1965).
- 17. I. Shehatta, Thermochim. Acta 213:372 (1993).
- 18. A. Bondi, J. Phys. Chem. 68:441 (1982).
- A. Reyes, M. Haro, I. Gascón, H. Artigas, and C. Lafuente, J. Chem. Eng. Data 48:887 (2003).
- B. Giner, A. Reyes, M. Haro, S. Martín, and F. M. Royo, *Phys. Chem. Liquids* 42: 173 (2004).